Suppressors of a cold-sensitive mutation in yeast U4 RNA define five domains in the splicing factor Prp8 that influence spliceosome activation.
نویسندگان
چکیده
The highly conserved splicing factor Prp8 has been implicated in multiple stages of the splicing reaction. However, assignment of a specific function to any part of the 280-kD U5 snRNP protein has been difficult, in part because Prp8 lacks recognizable functional or structural motifs. We have used a large-scale screen for Saccharomyces cerevisiae PRP8 alleles that suppress the cold sensitivity caused by U4-cs1, a mutant U4 RNA that blocks U4/U6 unwinding, to identify with high resolution five distinct regions of PRP8 involved in the control of spliceosome activation. Genetic interactions between two of these regions reveal a potential long-range intramolecular fold. Identification of a yeast two-hybrid interaction, together with previously reported results, implicates two other regions in direct and indirect contacts to the U1 snRNP. In contrast to the suppressor mutations in PRP8, loss-of-function mutations in the genes for two other splicing factors implicated in U4/U6 unwinding, Prp44 (Brr2/Rss1/Slt22/Snu246) and Prp24, show synthetic enhancement with U4-cs1. On the basis of these results we propose a model in which allosteric changes in Prp8 initiate spliceosome activation by (1) disrupting contacts between the U1 snRNP and the U4/U6-U5 tri-snRNP and (2) orchestrating the activities of Prp44 and Prp24.
منابع مشابه
Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation.
Prp8 is the largest and most highly conserved protein in the spliceosome yet its mechanism of function is poorly understood. Our previous studies implicate Prp8 in control of spliceosome activation for the first catalytic step of splicing, because substitutions in five distinct regions (a-e) of Prp8 suppress a cold-sensitive block to activation caused by a mutation in U4 RNA. Catalytic activati...
متن کاملMultiple functions of Saccharomyces cerevisiae splicing protein Prp24 in U6 RNA structural rearrangements.
U6 spliceosomal RNA has a complex secondary structure that includes a highly conserved stemloop near the 3' end. The 3' stem is unwound when U6 RNA base-pairs with U4 RNA during spliceosome assembly, but likely reforms when U4 RNA leaves the spliceosome prior to the catalysis of splicing. A mutation in yeast U6 RNA that hyperstabilizes the 3' stem confers cold sensitivity and inhibits U4/U6 ass...
متن کاملThe Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA.
The spliceosomal RNA helicase Brr2 catalyzes unwinding of the U4/U6 snRNA duplex, an essential step for spliceosome catalytic activation. Brr2 is regulated in part by the spliceosomal Prp8 protein by an unknown mechanism. We demonstrate that the RNase H (RH) domain of yeast Prp8 binds U4/U6 small nuclear RNA (snRNA) with the single-stranded regions of U4 and U6 preceding U4/U6 stem I, contribut...
متن کاملA dynamic bulge in the U6 RNA internal stem-loop functions in spliceosome assembly and activation.
The highly conserved internal stem-loop (ISL) of U6 spliceosomal RNA is unwound for U4/U6 complex formation during spliceosome assembly and reformed upon U4 release during spliceosome activation. The U6 ISL is structurally similar to Domain 5 of group II self-splicing introns, and contains a dynamic bulge that coordinates a Mg++ ion essential for the first catalytic step of splicing. We have an...
متن کاملSuppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs.
U4 and U6 small nuclear RNAs are associated by an extensive base-pairing interaction that must be disrupted and reformed with each round of splicing. U4 mutations within the U4/U6 interaction domain destabilize the complex in vitro and cause a cold-sensitive phenotype in vivo. Restabilization of the U4/U6 helix by dominant (gain-of-function), compensatory mutations in U6 results in wild-type gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 155 4 شماره
صفحات -
تاریخ انتشار 2000